从网站的用户层面,我们根据用户访问的行为特征将用户细分成各种类型,因为用户行为各异,行为统计指标各异,分析的角度各异,所以如果要对用户做细分,可以从很多角度根据各种规则实现各种不同的分类,看到过有些数据分析报告做了各种用户的细分,各种用户行为的分析,再结合其他各种维度,看上去内容绝对足够丰富,但很难理解这些分析结果到底是为了说明什么问题,也许作为一个咨询报告反映当前整体的趋势和用户特征确实合适,但如果真的要让数据分析的结果能够引导我们去做些什么,还是要在做用户细分前确定分析的目的,明确业务层面的需求。既然要做基于用户细分的比较分析,自然是为了明确某些用户分类群体的行为特征与其他用户群体的差异。这里主要从指导内容层面的调整为导向,通过比较各用户细分群体对内容需求的差异,优化内容运营,将优质的内容或者符合用户偏好的内容推荐给相应的用户。
网站用户管理的目标是发掘新用户,保留老用户。但仅仅吸引新用户还不错,还需要保持新用户的活跃度,使其能持久地为网站创造价值;而一旦用户的活跃度下降,很可能用户就会渐渐地远离网站,进而流失。所以基于此,我们可以对用户进行又一个细分——活跃用户和流失用户。
最近最常被问到的就是一些用户的统计指标,无论是决策层还是产品部门,所以这篇文章重点说下用户指标的一些内容。假设你想用尽量简洁有效的数据了解一个网站或产品的用户情况,你会问哪几个用户数据?其实一个聪明的提问者永远不会问网站的累计用户数有多少,甚至不会问网站的UV是多少,因为这些指标都不能从真正意义上去反映网站的价值和发展状况。
网站中新老用户的分析已经成为了网站分析中常见的一类用户细分的方法,也是网站分析中用户分析的一个重要组成。Google Analytics中对新老用户的命名分别为New Visitors和Returning Visitors,同时也为许多的分析指标提供了基于新老用户的细分。简单地说,新用户就是首次访问网站或者首次使用网站服务的用户;而老用户则是之前访问过网站或者使用过网站服务的用户。无论是新老用户都能为网站带来价值,这也是分析的意义所在。
Avinash Kaushik的博客中最近更新的一篇文章——Calculate Customer Lifetime Value, 里面非常详细地论述了什么是网站用户的生命周期价值(Lifetime Value,简称LTV),及为什么要使用LTV这个指标。其中主要阐述的是在SEM及网站推广的过程中不要仅关注于一次访问(Visit)中的转化率 (Conversion Rates)和CPA(Cost Per Acquisition)这些指标,计算用户在网站的整个周期中创造的总价值将更具意义,用户生命周期价值对于衡量网站的推广策略非常具有参考价值。
可能大家都有这样的疑问,当 各指标的影响权重不同时(比如电子商务网站可能会更看重用户完成的订单数或者在一段时间内的交易额),在这种情况下我们该如何来评价用户的综合价值?是的,层次分析法可以很好地解决这个问题。下面就用层次分析法分别介绍一下用户忠诚度评价及电子商务网站用户的综合价值评分
当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。 电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些用户,我们可以基于网站 的运营数据对他们的交易行为进行分析,以估计每位用户的价值,及针对每位用户的扩展营销(Lead Generation)的可能性。
忠诚用户不仅能为网站创造持续的价值,同时也是网站品牌口碑推广的重要渠道,所以目前网站对忠诚用户愈加重视。可能很多网站或者网站分析工具对用户做了“新用户”和“回访用户”的划分,但是单单区分新老用户是不够了,我们需要更加完善的指标来衡量网站用户的忠诚度。用户忠诚度(Loyalty),指的是用户出于对企业或品牌的偏好而经常性重复购买的程度。对于网站来说,用户忠诚度则是用户出于对网站的功能或偏好而经常访问该网站的行为
RFM分析原多用于传统营销、零售业等领域,适用于拥有多种消费品或快速消费品的行业,只要任何有数据记录的消费都可以被用于分析。那么对于电 子商务网站来说,网站数据库中记录的详细的交易信息,同样可以运用RFM分析模型进行数据分析,尤其对于那些已经建立起客户关系管理(CRM)系统的网站 来说,其分析的结果将更具意义。
用户分析是网站分析中一个重要的组成部分,在分析用户之前我们必须首先能够识别每个用户,分辨哪些是”New Customer”,哪些是”Repeat Customer”。这样不但能够更加清晰地了解到底有多少用户访问了你的网站,分辨他们是谁(用户ID、邮箱、性别年龄等);同时也能够帮助你更好地跟 踪你的用户,发现它们的行为特征、兴趣爱好及个性化的设置等,以便于更好地把握用户需求,提升用户体验。
2014-12-11 12:1:49
2014-9-1 9:49:35
2014-8-5 15:12:14
2014-10-18 19:49:25